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Thermal Effect on Aequorea Green Fluorescent Protein
Anionic and Neutral Chromophore Forms Fluorescence
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Abstract The emission behaviour of Aequorea green
fluorescent protein (A-GFP) chromophore, in both neutral
(N) and anionic (A) form, was studied in the temperature
range from 20 °C to 75 °C and at pH=7. Excitation
wavelengths of 399 nm and 476 nm were applied to probe
the N and A forms environment, respectively. Both forms
exhibit distinct fluorescence patterns at high temperature
values. The emission quenching rate, following a temper-
ature increase, is higher for the chromophore N form as a
result of the hydrogen bond network weakening. The
chromophore anionic form emission maximum is red
shifted, upon temperature increase, due to a charge transfer
process occurring after A form excitation.
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Abbreviations
BCA Bicinchoninic acid
ESPT Excited-state proton transfer
FPLC Fast protein liquid chromatography
GFP Green fluorescent protein
Gly Glycine

His Histidine
IPTG Isopropyl β-D-1-thiogalactopyranoside
LB Luria-Bertani
Ser Serine
SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel

electrophoresis
Trp Tryptophan
Tyr Tyrosine

Introduction

Since its discovery in the early 60s, several structural
derivatives of the green fluorescent protein (GFP) have
already been registered in the Protein Data Bank (http://
www.pdb.org/), and their physico-chemical properties are
rather well described in the literature [1–5]. The wild type A-
GFP protein from the bioluminescent jellyfish Aequorea
victoria, has 238 amino acid residues, a molecular weight
(MW) of 26.9 kDa and a theoretical isoelectric point (pI) of
5.8 (from ExPASy). Its X-ray barrel-type structure was
resolved at 1.85Å (PDB entry: 1W7S; [6]), and is formed
by eleven β-sheets and one α-helix, to which the GFP
chromophore is connected. The latter is obtained by a post-
translational cyclization reaction of the polypeptide skeleton
Ser65, Tyr66 and Gly67 residues, followed by oxidation of
the Tyr66 residue lateral side-chain [7–9]. Through a
hydrogen bonds network involving particular polar residues
and H2O molecules, the cromophore is able to establish non-
covalent interactions with the protein [10, 11]. From a
structural point of view, the protein is highly regular although
an exception to this overall behaviour can be observed
between strands 7 and 8 of the β-barrel [12, 13], whose
termini is formed by small sections of the α-helix that
resemble “lids”.
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Regarding its photophysics, the wild type GFP protein is
characterized by high quantum yields, ϕf~0.8, in contrast to
what is observed for its individual cromophore in aqueous
solution, ϕf~10

−3 [14, 15]. In the native fold, the inhibition
of molecular vibration or rotation along the chromophore
double exo-metilene bond, prevents emission quenching by
a rapid internal conversion process [13, 15, 16]. Inside the
β-barrel, chromophore's fluorescence extinction by O2 [17]
and by hydron ions [18] is also avoid.

Most of the GFP structural events reported in the
literature have been studied below room temperature.
However, several applications of GFP under physiological
conditions (e.g. T=20–40 °C, pH=6–8) have recently been
proposed, in domains like cell biology and biotechnology.
Namely, in GFP-fused proteins folding [19] and enzyme
activity [20] assays, and as a biological indicator in thermal
processes [21]. In face of these previous observations, it's
clear that a thorough and systematic study of the photo-
physical properties of GFP is of the utmost relevance, and
needs to address distinct medium conditions (e.g. temper-
ature, pH, ionic force). It is the purpose of this work to
contribute for the latter, performing accurate measurements
of the A-GFP excitation and emission spectra in the
temperature range between 20 °C and 75 °C and pH=7
(phosphate buffer), and therefore accessing the influence of
temperature on A-GFP photophysical properties. The
results obtained are interpreted and discussed in terms of
structural features and photophysical behaviour taking into
account the most recent findings on this matter.

Materials and Methods

Protein Expression and Purification

The His-tagged wild type A-GFP protein was expressed
in E. Coli BL21 competent cells using the plasmid
pRSETa containing its gene. Cells were grown at 37 °C
in Luria-Bertani (LB) broth with 100 mg/ml ampicillin.
The cultures were induced by addition of 1 M isopropyl
β-D-1-thiogalactopyranoside (IPTG) and grown for ~9 h,
at 28 °C. The cells were harvested by centrifugation and
resuspended in phosphate buffer at pH 8. Cells lysis was
performed by sonication and the resultant crude extract
centrifuged to remove cell debris. The recombinant
protein with a six-His tag was purified using a Ni-NTA-
agarose affinity column (from Qiagen) and Fast Protein
Liquid Chromatography (FPLC; from Pharmacia). In
addition, the protein was dialysed against 10 mM phos-
phate buffer (pH 7) and stored at −18 °C. Protein purity
was confirmed by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE), from where the molec-
ular weight MW~27 kDa, was recovered. Protein con-

centration was estimated by bicinchoninic acid (BCA)
assay [22].

Fluorescence Measurements

Fluorescence spectra were recorded in a spectrofluorimeter
Fluorolog F112A (from Spex) by excitation at 1exc=399 nm
or 1exc=475 nm. Excitation spectra were obtained at 1em=
506 nm. The recorded spectra were corrected for Raman
scattering, and detecting system response using a correction
curve previously determined for the equipment. The
temperature was varied between 20 °C and 75 °C, with an
estimated accuracy of ±0.5 °C, and the solutions were
stirred during the measurements. All spectroscopic mea-
surements were carried out with 0.1 μM protein dissolved
in 10 mM phosphate buffer at pH=7.

Results and Discussion

The excitation spectra of A-GFP solutions (0.1 μM, pH=7)
are illustrated in Fig. 1, and were obtained using an
emission wavelength of 1 em=506 nm.

The bands visible at 400 nm and 476 nm are usually
associated with the chromophore protonation states neutral
(N) and anionic (A), respectively [15, 23]. The excitation
band at 278 nm is due to nonspecific, more energetic
electronic transitions occurring in the chromophore. At pH
7 and room temperature, the chromophore neutral form is
the dominant one. As temperature is increased from 20 °C
to 75 °C, both bands at 400 nm (form N) and 476 nm (form
A) decrease their intensity, and this trend is enhanced for
the neutral form; above 60 °C the excitation spectra become
identical, and it can be concluded that beyond that threshold
temperature no longer influences the chromophore photo-

Fig. 1 Excitation spectra of A-GFP solution (0.1 μM, pH=7), 1em=
506 nm: (—) 20 °C, (- -) 60 °C, (-⋅-⋅) 65 °C, (⋅⋅⋅⋅) 70 °C
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physics. The blue shift occurring in the neutral form peak,
from 400 nm to 396 nm, suggests the occurrence of a more
energetic electronic transition as temperature is increased.

The emission spectra obtained by excitation at 399 nm
and 475 nm, in the temperature range between 20 °C and
75 °C (pH=7), are recorded in Figs. 2 and 3, respectively.
The chromophore neutral form selective excitation at
399 nm gives origin to the green fluorescence with
maximum at 511 nm (see Fig. 2). This emission results
from the excited neutral species (N*) deprotonation form-
ing an excited intermediary (I*), as described by Chattoraj
et al. [24]; the excited-state proton transfer (ESPT) should
occur via the hydrogen-bond network from cromophore to
Glu222 residue, as reported by Laino et al. [25].

When temperature is increased to 60 °C, it is very
interesting to observe that the band at 511 nm markedly
decreases its intensity (Fig. 2), and this fact can be mainly
ascertained to the weakening of the hydrogen-bond net-
work. Consequently, the ESPT process occurring via
hydrogen-bond network is progressively deactivated thus
quenching the emission from I*. Above 60 °C, the protein
unfolds and its cromophore is released from its static
environment and exposed to the solvent. The intrinsic non-
radiative and dynamic events become more important,

highly reducing the cromophore fluorescence intensity.
Here, the most probable N* species decay channels are
the weak and featureless emission from state S1 to state S0
at 460 nm, and the non-radiative decay through rotation
along one of the ring-bridging bonds.

The cromophore anionic form emission spectrum, obtained
by excitation at 475 nm (Fig. 3), exhibits a blue shifted
emission band with maximum at 507 nm, when compared
with the corresponding neutral form emission spectrum.

It can also be observed in Fig. 3 that, upon temperature
increase the anionic form emission maximum is shifted to
the red by roughly 6 nm, resulting from cromophore
solvent exposure during protein unfolding. Upon excitation,
the anionic species dipolar moment changes by Δμ≈6.8 D.
The dipolar moment variation, not observed in the neutral
form, results from a charge density transfer occurring
between the close neighbours (~9Å) oxygen atoms located
on the phenolic and imidazolinone rings [24, 26]. This
dipolar change is responsible for the solvent molecules
reorganization around the anionic form electronic excited
state decreasing its energy. It should be noted that this
phenomenon is more visible for solvent exposed chromo-
phore molecules and leads to the observed red shift. The
emission intensity decrease upon temperature increase is
due to the enhancement of dynamic quenching processes,
but also to the prevalence of non-radiative decay through a
hula-twist rotation above 60 °C.

The A-GFP chromophore emission is highly quenched
by temperature increase and this effect is twice more
pronounced on its neutral form before unfolding (see
inserts on Figs. 2 and 3). Opposite to the A* decay, the
N* decay occurs mainly via an ESPT process involving the
hydrogen-bond network. Following a temperature increase
this mechanism is progressively deactivated due to the

Fig. 2 Emission spectra of A-GFP solution (0.1 μM, pH=7), 1exc=
399 nm: (—) 20 °C, (- -) 60 °C, (-⋅-⋅) 65 °C, (⋅⋅⋅⋅) 70 °C. Insert:
Emission maxima variation with temperature increase

Fig. 3 Normalized emission spectra of A-GFP solution (0.1 μM, pH=7),
1exc=475 nm: (—) 20 °C, (- -) 40 °C, (-⋅-⋅) 60 °C, (⋅⋅⋅⋅) 70 °C. Insert:
Emission maxima variation with temperature increase
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network breakage, causing the accentuated decrease on the
chromophore neutral form emission.

The emission maximum break, observed at 60 °C for
both N and A forms (see inserts on Figs. 2 and 3), reflects
the temperature induced protein unfolding. The melting
temperature value determined here of 60 °C is smaller than
T≈78 °C, observed for the A-GFP (at pH=7) by Ward et al.
[27]. Above 60 °C the A-GFP structure collapses and its
emission rapidly decreases due to the accentuation of
intrinsic non-radiative and dynamic quenching events.

Conclusions

The hydrogen bond network weakening, caused by a
temperature increase up to 75 °C, is responsible for the
ESPT process deactivation at higher temperature values.
This event is particularly relevant in the excited neutral
form decay via deprotonation and conversion to the
intermediary I*, leading to a pronounced fluorescence
quenching of the later. Regarding the anionic form, due to
the occurrence of charge density transfer after excitation, its
fluorescence maximum is progressively red shifted upon
temperature increase. Above 60 °C the protein unfolds,
exposing its chromophore to the solvent. Consequentially,
the intrinsic non-radiative and dynamic quenching decay
events become predominant, highly reducing chromophore
both forms fluorescence intensity.
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